Quantum fidelity for degenerate ground states in quantum phase transitions.
نویسندگان
چکیده
Spontaneous symmetry breaking in quantum phase transitions leads to a system having degenerate ground states in its broken-symmetry phase. In order to detect all possible degenerate ground states for a broken-symmetry phase, we introduce a quantum fidelity defined as an overlap measurement between a system ground state and an arbitrary reference state. If a system has N-fold degenerate ground states in a broken-symmetry phase, the quantum fidelity is shown to have N different values with respect to an arbitrarily chosen reference state. The quantum fidelity then exhibits an N-multiple bifurcation as an indicator of a quantum phase transition without knowing any detailed broken symmetry between a broken-symmetry phase and a symmetry phase as a system parameter crosses its critical value (i.e., a multiple bifurcation point). Each order parameter, characterizing a broken-symmetry phase from each degenerate ground state reveals an N-multiple bifurcation. Furthermore, it is shown that it is possible to specify how each order parameter calculated from degenerate ground states transforms under a subgroup of a symmetry group of the Hamiltonian. Examples are given through study of the quantum q-state Potts models with a transverse magnetic field by employing tensor network algorithms based on infinite-size lattices. For any q, a general relation between the local order parameters is found to clearly show the subgroup of the Z_{q} symmetry group. In addition, we systematically discuss criticality in the q-state Potts model.
منابع مشابه
Energy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملQuantum information approach to quantum phase transitions
Quantum phase transitions of a many-body system at zero temperature are characterized by the change of the ground state properties as model parameter g in the system Hamiltonian H(g) is varied across the transition point. People think that structures of the ground-state wavefunction become qualitatively different across the transition point. That is, if we calculate the fidelity, a concept emer...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2013